第四届中国软件工程大会CCSE2007演讲稿（2007年6月17日）

软件分析、测试、开发和维护的利器--SI-NS图技术

杭州思图软件科技有限公司 斯传根

感谢大会执行主席和希赛网为我安排这次演讲。我要讲的和演示的是SI-NS图技术，它适用于程序设计、开发、测试、文档、维护的全过程，能显著改善一线软件开发人员的工作环境，提高他们的工作质量和效率。

1. 程序员在分析、测试和维护程序时面临的困境
现有的无论面向过程还是面向对象的计算机语言，都是人为定义的形式化语言。受形式语言和编译技术的制约，它们并非完全人性化的，或者说与人和谐的。程序员整天面对的是显示屏里见首不见尾、整体结构差、冗长的、存在二义性的、一维的文本程序。他们的精力、聪明才智和时间的很大部分要耗费在不断弄懂自己或者别人开发出来的程序结构和设计思想上，连每个“if”、“else”的配对次序以及语法标点符号都不能疏忽。这会严重影响程序员的整体结构性思维和解决实际复杂问题的能力。软件的开发成功率低、开发周期长、成本大、可靠性和可维护性差已成为当前软件业的通病。所谓“不上ERP是等死，上了ERP是找死。”就是业内人士对目前企业信息化遭遇尴尬局面的无奈评价。即便是世界软件巨子微软公司，它的Windows操作系统也始终存在漏洞，需要不断打补丁更正。

2. 美国Sun公司要求规范程序代码
为了规范每个人写的程序，便于相互理解和交流，创立了Java语言的美国著名Sun公司在1997年9月发布过一篇很有影响的名为“Java程序代码规范”的文章[9]。文章一开始就为什么要规范程序代码提出了以下理由：

1、在一个软件的生命周期里，80%的成本是花在维护中。

2、很少有软件自始至终一直由它最初的设计者维护的。
3、规范程序代码可以改善软件的可读性，使软件工程师能更快更好地理解别人提供的程序代码。

4、如果将源代码视作一件要交付的产品，应当像对待别的产品一样妥善地整理和包装。

笔者非常同意文章的观点和提出的上述理由。但细看文章的规范内容，涉及的只是程序代码的注释、缩排以及语句长度和格式等等。而程序形式仍然是我们司空见怪的，一维的、类似于接下去我们要测试其可读性的文本程序。它并没有根本改善程序的可读性，程序员也没有因此根本摆脱面临的困境。
3. 测试一个已按Sun公司要求规范的程序可读性
请看程序1，这是一个Turbo C系统程序。程序不长，不算太复杂，书写格式也已经按Sun公司要求作了规范。我们从以下三方面测试其可读性。

1、自上而下依据条件判别程序要执行的语句；
2、自下而上依据执行的语句判别程序须满足的条件；
3、程序总体结构层次的清晰度。

void valuestring(CELLPTR cellptr, double value, char *vstring, int col,

 int fvalue, int *color, int formatting)

/* Sets the string representation of a value */

{

char s[81];

char *fstring;

int width, pos;

if (value == HUGE_VAL)
 {

 strcpy(vstring, MSGERROR);

 *color = ERRORCOLOR;

 }

else

 {

 if (formatting)
 {

 sprintf(vstring, "%1.*f", fvalue & 15, cellptr->v.value);

 if (fvalue & COMMAS)

 {

 pos = strcspn(vstring, ".");

 while (pos > 3)

 {

 pos -= 3;

 if (vstring[pos - 1] != '-')

 {

 movmem(&vstring[pos], &vstring[pos + 1], strlen(vstring) - pos + 1);

 vstring[pos] = ',';

 }

 }

 }

 if (fvalue & DOLLAR)

 {

 if (vstring[0] == '-')

 {

 fstring = " $";

 width = colwidth[col] - 2;

 }

 else

 {

 fstring = " $ ";

 width = colwidth[col] - 3;

 }

 }

 else

 {

 fstring = "";

 width = colwidth[col];

 }

 strcpy(s, vstring);

 if (fvalue & RJUSTIFY)

 {

 if (strlen(vstring) > width)

 vstring[width] = 0;

 else

 sprintf(vstring);

 }

 else

 sprintf(vstring, "%-*s", width, s);

 movmem(vstring, &vstring[strlen(fstring)], strlen(vstring) + 1);

 strncpy(vstring, fstring, strlen(fstring));

 }

 *color = VALUECOLOR;

 }

} /* valuestring */

程序1 一个选自Turbo C的系统实例程序
（1）我们首先执行自上而下从条件到结果的测试，这在阅读和调试一个程序时会经常碰到的。例如现在问：假若程序中value不等于HUGE_VAL，并且formatting也不成立，问程序执行哪些语句？为帮助找出结果，允许被测者用笔对程序的if、else等结构进行勾画。

从多次公开测试结果看，即使是比较熟悉C语言的人，在这个不长，不算太复杂的程序上要找出结果也是不容易的，至少要花数分钟时间。有近一半人的结果还是错误的。没有人对所得结果敢肯定有百分之百的把握。

（2）在程序测试和维护中，还经常要求从一个错误结果找出产生的原因，即反过来自下而上，执行从结果到条件的测试。例如，要求指出程序底部那条语句 *color=VALUECOLOR被执行应满足的条件。
这样的要求如果仍借助一维的文本程序，是很困难的。计算机语言学家在定义一个语言时也从未考虑过反过来自下而上去读一个程序的需求。读者不妨自己试一下看，，需要花的时间就不是数分钟的问题了。

（3）最后考察程序总体结构层次的清晰度。

程序说到底是由三种类型的结构，即顺序、选择和循环，按各种不同的组合和嵌套关系构成的。这里所讲的程序总体结构层次，是指程序总体上可以看成什么结构，再依次到每一层的内部，分别是什么结构，由哪些语句组成，各由什么条件所控制。这在SI-NS图上是非常清晰、一目了然的，然而依靠程序1这样的文本程序要做到这一点，是非常困难的。
4.读起来比规范的程序代码容易理解百倍的SI-NS图
笔者开发的SI-NS图技术，能将一维的、不论是否规范的文本程序自动变换成清晰、工整、二维结构化的SI-NS图。
图1是上述C程序经自动变换后输出的SI-NS图。

[image: image1.wmf]0

2

=

+

+

c

bx

ax

图1 由Turbo C实例程序生成的SI-NS图

在SI-NS图上回答刚才提出的三个问题是轻而易举的。
先看问题1，假若value不等于HUGE_VAL，以带有v的竖线分界，我们的视线立即落在条件formatting，如果formatting也不成立，则立即去执行右边的“%”，它表示空操作，什么也不干，但接着要去执行最下边一条语句*color=VALUECOLOR。整个判断过程一目了然，论时间至多只需要数秒钟。

再看问题2，要求指出程序底部那条语句 *color=VALUECOLOR被执行应满足的条件。程序员只需沿该语句左边的分界线往上看，立即可以找到该语句执行的条件是value不等于HUGE_VAL。整个判断过程仍然不会超过数秒钟。

最后看问题3，从SI-NS图看程序的总体结构层次及其内部结构。

依据SI-NS图，我们一眼可以看出程序总体上是一个选择结构，它由条件(value==HUGE_VAL)及该条件控制下的两个选择体构成，条件满足的选择体很简单，仅由两条语句组成。条件不满足的选择体比较复杂，但能清楚看到它仅由条件为(formatting)的选择结构和语句*color = VALUECOLOR组成。这样依次一层层剖析，再复杂的程序在SI-NS图上也都能一眼看清楚程序的总体结构层次及各个层次的内部结构。程序员不仅清楚了解程序的总体结构，还能依据条件一下子找到需要关注问题的细节。这对于高质量和高效率的程序维护是绝对必要的。然而在程序1所示的文本程序上要做到这一点是无法想象的。
同样的几个问题，面对一维的文本程序和二维的SI-NS图两种不同形式的文档，测试所花的时间，前者需要数分钟乃至更多的时间，后者只要数秒钟。前者要借助笔在程序上勾画，思想须高度集中，对最后结果无绝对把握，对程序的总体结构层次始终是模糊的。后者无需笔，更谈不上紧张，简直可以说是一眼就看出来了，且对结果可以百分之百肯定。两者可读性测试过程的效率和质量的差距之大是显而易见的，且越是结构复杂的程序这种对比效应越明显。

5.计算机语言文法存在的二义性问题

我们熟知的计算机语言，文法定义中多存在二义性。例如C语言if语句的文法，用EBNF可以定义为：

<if语句> = “if” <条件> <语句> “else” <语句> | “if” <条件> <语句>.
现在考察如下C语句：

if（天晴） if （气温>30度） 去游泳； else 呆在家里看书；

倘若有人针对上述语句问：天下雨干什么？会有二种答案：

一是“呆在家里看书”；二是“什么也不干”。二种答案分别对应二种定义的语句结构：

“呆在家里看书”对应的是if语句前一种语句结构：

if（天晴）（ if （气温>30度） 去游泳； ）else 呆在家里看书；

“什么也不干”对应的是if语句后一种语句结构：

if（天晴）（ if （气温>30度） 去游泳； else 呆在家里看书；）

同一个语句可以对应两种不同的语句结构，因此得到两种不同的解释，有两种不同的执行结果，但它们都符合语言所定义的文法，这就是文法的二义性。
二义性对语言来说是不允许的。我们很难想象在执行一条语句时既可能预期这样的结果，又可能预期那样的结果。因此C语言的编译规定了，在将if语句解释翻译为中间代码的时候，else 总是与它前面最近的if匹配。于是上面的if语句只能解释为后一种语句结构，答案也只可能是“什么也不干”，这才避免了C语言的二义性。但是我们不能因此否定C语言文法中实际存在的二义性，也不应低估在阅读程序时它给程序员带来的困惑。

SI-NS图不存在二义性问题。上述C语句经变换产生的SI-NS图为：

[image: image2.png]T e . Falue. v *antor. st forameing o7 & ool

i rvalis, i rolor, i fomering

7+ Sers tha soring repressniarion of & tale +/

rar 30511,
[o
ik wan, poss

& tvatue == CE B1) &
sorepy vscring, TSGERIOR ; [T\ tromarcing i
eoler = mrORIOR;
[sprise vemring, "L e, fabie & 15, callytrv.vael; g
[(eatve & comus) &
lpes = soremntosering, 15 3
LS (pos > 31
fos = =
[twsmringtpos - 11 1=) |
o crmring(oes], werimoos 11, srtenivanning - pos ¢ 107
[peringtpoe] =
[(Fualue & DOLLAR) &
[(wsoringto] = 1 A tzting = 7
T solwan(eol]
fstring = 7 7 -
(oo S Sobdatntco - 2 [Sn 2 coliehicoll - 3
[sorepyts, veering s
[(walie & ROUSTIFY)
[Gorimiosering) > wiach) A sprimce (vsorins,
[oringtvaaen] = 0; [sprive ttwserive) ;|
faomestvecring, systringlocrientesring | serientvsoring + 15
[Somcpyiostring, focring, scrienimtrie) i)
[Fentor = wamooior;

EFf B2 CI2REE CTONS T A S5iHaY SLNS B

倘若也有人针对该SI-NS图问：天下雨干什么？我们只需从条件“（天晴）”往右下方看，答案是“%”，它表示空操作，“什么也不干”。此外没有第二个答案，绝对不会错看成“呆在家里看书”。

文本式程序除了文法上的二义性外，一些本身不包含具体信息的语法词汇和符号如：if, else, do，｛，｝，begin，end等也充斥其间，使程序变得冗长。SI-NS图摒弃了使程序变得冗长的if, else, do，｛，｝等语法词汇和符号。它将一维的文本程序展开成为二维的，逻辑含义清晰的，不存在二义性的结构化程序框图。

6. SI-NS图相对于PAD、CSD、NS图的优越性
“程序图型化表达”是世界上都在致力研究的一项技术，旨在提高程序的可读性。为了克服文本程序的弊端，日本日立公司提出了软件设计图型表现法PAD(Problem Analysis Diagram)。德国人用的是Struktogram（即NS图）。1981年笔者在德国访问时，经常目睹德国同事要把开发的各个阶段程序结果绘制成NS图，以便能在整体结构清晰的NS程序框图上分析和考虑下一步要解决的问题和步骤。即便是学生上交的编程作业，也要求附上相应的NS图。2000年4月，笔者在美国硅谷访问期间，以CSD(Control Structure Diagram)为表示形式的GRASP在因特网上公开发布。该项目得到了美国国家科学基金会（National Science Foundation）、国家宇航局航天飞行中心（NASA）、国防部研究开发署（ARPA）以及国防信息系统署（DISA）的多项资助[3]。

比较而言，笔者创立的SI-NS图技术，要优于日本的PAD，美国的CSD以及德国的Struktogram（即NS图）。
6.1 比较SI-NS图与PAD图

笔者从严桂兰，刘甲耀编著的《PAD与Turbo C程序设计》[2]任选了一题：求解一元二次方程
[image: image9.png]T (RAE) /1|
T (SE>s0E) /N

EiEd |REFEES:

根的C程序：
#include"stdio.h"

#include "math.h"

main()

{

float a,b,c,d,xl,x2,re,im;

do{

printf("Input three numbers:");

scanf ("%f%f%f",&a,&b,&c);

if(a!=0)

{

d=b*b-4*a*c;

if(d>=O)

{

xl=(-b+sqrt(d))/(2*a);

x2=(-b-sqrt(d))/(2*a);

printf("xl=%f x2=%f\n",xl,x2);

}

else

{

re=-b/(2*a);

im=sqrt (-d)/(2*a);

printf("re=%f im=%f\n",re,im);

}

}

}while(a! =0);

printf("program end !");

}
由C程序生成的PAD图如下。这里的字体较小，是因为原PAD图还要大，被缩小的缘故。

[image: image3.png][l 6-9] KfF—IT - KHRE ax*+bx+c=0HR.
(1) PAD

#include“stdio. h”

#include®math. h”

main()

float a,b,c,d,x1,x2,re,im;

printf (“Enput three numbers:”);

scanf (*UBFYT% 7, &a, & b,&e);

d=b#b—4%axc;

x1= (—b+sqrt(d)) /(2 # a);

I x2= (—b—sqrt(d)) /(2 % a);

printf (*x1'= %{ x2=%f\ n”, x1,x2);

until (a1=0);

(d>=0)

re=—h/(2 % a);

X im=sqrt(—d) /(2 * a);

printf (“re== % im=%f\ n”, re,im);

printf (“program end}”);

+ 309 -

由同一个C程序生成的SI-NS图：

[image: image4.png]#include"stdio.

loat ab,c,dx1,22, e 1

[prince(Tpue_three mmber.
Scant {"s£rAE", ca, b, 60) 7

)

-bragre(d))/ (2%) ;
-b-sqre[d))/ (2%] ;

[PrinCE(al=aE K2=2E\n x1,x2);

b/ (27a)
are (-d)/(2%);
printt ("re=E in-if\n” re,in) ;

i (a-0) |
a-prp-avarc; %
i (=0 |

el =01

[prince(progran ena 11);

显然，SI-NS图在空间效率、图形与其表达逻辑的一致性、结构二维性、自上而下，一点进，一点出、信息完整性、实际可用性方面要优于PAD图。

6.2 比较SI-NS图与CSD图

以下左边是一个函数名Binary_Search执行二叉树搜索算法的C函数。右边是由GRASP生成的CSD图。据介绍，左边“虽然是一个缩排得很好，非常简单的C程序函数，但也不是一下子能看出函数内各个控制层次的。”而右边的CSD，“程序内各个控制层次一目了然。”[3]
[image: image5.png]int Binary_Search {KeyType key,

ArrayType 2.
int array_sizel

¢

int low, middle, high;

low = 0;
high = array_siza;

while {low <= highl
¢
midale = {low + hign}
if [Kay < Almiddlel)
high = middle - 1;
else if (Key » almiddlel}
low = middla + 1;
alse
raturn middle;

/2

'
raturn 0;

h

int Binary_Search {KeyType key,

¢

3

ArrayType 2.
int array_sizel

@ int lov, middle, high;

F— 10w = o,
F— nigh = array_size;
while {low <= highl

¢
midale = {low + hign} / 2;
if [Kay < Almiddlel)

L~ nigh = miadls - 1;
else if (Key » almiddlell
L 1ov = miadale + 1;

alse

L return miaale;

+

— raturn o;

[image: image6.png]R R

int array size)

e lov, widdle, high:

i)

[miatle = (lov + bigh) / 2;

n (key < Aluiddle]) g

[hioh = middle - 1:[N (Key > Afwiddle))
1o - wiadle + L |revum wiadle;

renam 0;

以下是由同一个C函数程序生成的SI-NS图：

[image: image7.png]nain ()

{

int al11];
int 4,5, .
printf ("input 10 numbers :\n"); Py
Tor (15153411554
scant (“%d”,4ali]); o=l o a1

g), T

342, 34

<2105 1+4) L

it (al3]>aliH])
{t=alil; alil=ali+1]; ali+1l=t;
printf (“the sorted numbers :\n”);
For (i=1;1411;5+%) Wi oC13) 0]
printf (% % alil); }

alilenli+1]

CSD图只是在原来的程序上勾画，仍然是一维的，仍然包含if、else等语法词汇。显然，SI-NS图在结构二维性、清晰性、自上而下，一点进，一点出、易读易理解性方面要优于CSD图。

6.3 比较SI-NS图与NS图

本文从谭浩强教授的《C程序设计》选了一题：用起泡法对10个数排序。书中C程序和用NS图表示的算法设计如下：[1]
[image: image8.png][prine £l e 10 mabers w;

|

HEh

[prince("che sorced mabers w'1;

NS图的主要问题是带有长斜线的选择结构。它使得(1)不适宜于计算机处理、显示和打印输出。(2)斜线间的条件项不能过长，否则占据空间太大。它带来的直接后果是，NS图难以包含语言程序的全部信息，难以从语言程序自动生成，存在“程序与逻辑图分离”的问题。用NS图创始人Ben Shneiderman自己的话讲,“NS图只是在程序设计最初阶段有用”（I believe it is helpful at early stages of program design）。NS图只是一种程序设计形态，至今我们在各种计算机教材和文献里能见到的NS图应用，主要仍局限于算法设计阶段。

SI-NS图解决了NS图存在的上述问题，能用工具软件从程序自动生成。它具有NS图结构清晰、可读性特好的优点，同时又保留了程序的全部信息。它不仅是一种设计形态，也是一种程序形态。它实际上是NS图和程序两者的统一体。它同时具有的这两个特性使程序员不仅对程序的整体结构层次一目了然，有利于整体结构性思维，也能从条件立即找到需要关注问题的细节。程序员甚至无需计算机就能够在SI-NS图上执行程序。SI-NS图是程序白盒子分析、测试和维护的最佳平台。SI-NS图的应用能贯穿程序设计、开发、测试、文档、维护的全过程。
俗话说，“不怕不识货，只怕货比货。”相信读者在经过自己比较之后，可以归纳出表1所示的结论。

	
	日本PAD图
	德国NS图
	美国CSD
	SI-NS图

	结构二维性、清晰性
	良
	优
	差
	优

	信息完整性
	存在问题
	存在问题
	优
	优

	空间效率
	差
	较差
	良
	优

	图型与其表达逻辑的一致性
	较差
	优
	一般
	优

	自上而下，一点进，一点出
	较差
	优
	差
	优

	机器易处理性
	难
	难
	一般
	较难

	易读、易理解性
	良
	优
	较差
	优

	实际可使用性
	较差
	较差
	良
	优

表1 SI-NS图相对于其它图型表示方式的优势

7. SI-NS图技术的实际应用

7.1 用SI-NS图技术改革程序开发模式，变面向程序为面向SI-NS图

笔者曾经与围棋国手常昊的老师、全国第三届围棋团体赛总裁判长，上海的丘佰瑞先生合作开发过一个“围棋瑞士制积分循环编排”软件。该编排方法不同于循环制也不同于淘汰制，它比循环制的比赛轮次少得多，又比淘汰制的比赛准确性要高得多。但算法非常复杂，有回溯问题。手工编排的话，到最后几轮，编排裁判往往编排到半夜也编排不出来。开发过程与当时在杭州举办的全国第三届围棋团体赛同步进行。由丘先生告诉我编排算法，我回去将算法设计成SI-NS草图，然后编码输入我单位的计算机，再转换打印出SI-NS图，然后在SI-NS图上执行并验证程序的算法逻辑，我认为没有问题后，第二天将程序拷贝到现场省体委科研所一台带有数据库信息的计算机去执行，总是一次就能通过。倘若出现某一轮计算机编排结果与手工编排的结果不一致，往往是因为我理解的编排算法还有问题。这时由丘先生进一步告诉我相关的算法，我回去再修改SI-NS图。这样到比赛结束，“围棋瑞士制积分循环编排”软件也同步开发成功。当时浙江省体委竞赛处和杭州棋院出面有一个书面鉴定，省体委科研所还专门在《计算机世界》发表过一篇专题报道。

以上整个开发过程除了代码输入、现场测试用到计算机外，主要是面向SI-NS图，跟SI-NS图打交道，基本上不用计算机。

这是一种完全可行，并且行之有效的程序开发模式。程序员在整个程序设计、开发、测试、文档、维护过程中，自始至终面对的是读起来要比程序容易理解百倍的SI-NS图。用SI-NS图算法设计，在SI-NS图上执行并验证程序的算法逻辑。当计算机执行结果与预期的不一致时，在SI-NS图上分析出错原因并进行修改。当有新的需求时，首先也在SI-NS图上找到相关的程序模块，扩充和修改相应的程序逻辑。即便用到计算机也是短暂的，不耗费精力的，而且完全可以交给其他人去做。程序员的聪明才智都可以用在刀口上，并始终保持充沛的精力和清醒的头脑。这样的开发模式能保证程序的开发质量，一次开发成功率非常高，自然能有效缩短程序的开发周期，降低软件的开发成本。
笔者曾用这种SI-NS图开发模式开发了不少软件，如包括财务软件在内的“外贸业务办公自动化系统”，“集装箱优化包装设计配载系统”，“能源和设备管理信息系统”，“中西文宽屏显示编辑系统”等。围棋方面除了“围棋瑞士制积分循环编排”软件外，还有“围棋计算机辅助训练和比赛系统”，该软件与程序到SI-NS图的自动变换软件都参加过新加坡国际软件大展，还在第三届全国软件展上，与“北大方正出版系统”等一些国内著名软件一起，被《计算机世界》列为优秀软件。

值得一提的是，由于使用了SI-NS图和相应的软件开发技术，上述软件都是笔者一个人在很短的时间内一次开发成功。一些多少年以前开发的软件，只要打开它的SI-NS图就立即能清楚当时的设计思想。编程对笔者来说是一种乐趣。在发挥创造性思维的同时，也给我带来一种精神上的享受。
7.2用SI-NS图技术改革计算机软件教材和教学方法

会游泳的人都知道，天天在泳池里学游20来米，是永远不能到大江大河里去的。但倘若有一天他一口气硬是游过了200米，就可以去游钱塘江。

学习编程也一样，一个学生如果不经过一、二个有一定规模和难度的编程训练是不能算会编程的。教材中需要这样有一定规模和难度的编程实例，需要有指导学生在编写有一定规模和难度的程序过程中解决问题的方法和步骤。而这些恰恰是现有的计算机语言类教材欠缺的。原因也简单，过长和过于复杂的文本程序实例既不容易读懂也不容易讲解。但倘若采用SI-NS图，情况就完全可以改观了。

又如“编译技术”是计算机专业学生一门重要的专业基础课程。但目前一些教材和教学方法使学生在学了编译以后仍不知道怎样具体设计和开发语言的编译程序。由笔者编写、清华大学出版社出版的《编译设计与开发技术》[6]一书，以提高学生研发能力为目标，运用SI-NS图技术，将一个PL0编译实例程序全部变换成了SI-NS图，并对编译教材内容和教学方法进行了改革[7]，取得了满意的效果。学生不仅掌握了与编译有关的形式语言和语法分析理论，懂得了什么是编译，更重要的是在学完了不到60学时的课程内容后，完全有能力自己去设计和开发一个语言的编译程序。学生们自行完成的第13章一个有一定规模和复杂度的编译课程设计是最好的说明。

笔者曾经在德国、美国和加拿大都呆过相当长一段时间。无论国内国外至今还没有看到过正式出版的教材能将规模和复杂度如PL0编译程序那样完整的程序转换成相应的图形化表达。就此一点，印证了清华大学出版社《编译设计与开发技术》一书的编审委员会对该书特色的评价：“技术领先，本教材所有编译实例程序，都采用了编者研究开发的程序到SI-NS图自动变换技术，这项技术在国际上处于领先地位。”

据清华大学主办的《计算机教育》第1期介绍[8]，目前该教材已经被清华大学在内的全国多所高校采用。在清华大学主办的《计算机教育》第2期发表有笔者写的“以提高学生研发能力为目标的编译教材和教学改革研究”的文章。[7]
笔者甚至还在“汇编语言程序设计”这门课中尝试SI-NS图开发模式。也取得了一定的效果。限于篇幅，不在这里介绍了。
7.3用SI-NS图技术规范程序代码文档
鉴于SI-NS图的可读性远胜过按Sun公司要求规范的代码程序，笔者建议用SI-NS图来统一规范程序代码文档。毫无疑问，它更有利于软件工程师相互交流，能更大幅度降低软件的维护成本，在交付时也更像一件整理和包装得精良的正式产品，得到用户的认可。
7.4 SI-NS图技术揭开了程序多态性研究的序幕
自然界物质具有多态性。例如水，有液态、气态和固态。人类对水的性质和用途的研究，不仅限于液态的水，还研究水蒸汽和固态的冰。于是就有了水轮机，有了蒸汽机、蒸汽轮机，还有了冰淇凌、冰上芭蕾等等，极大地丰富了人类的物质和文化文明。人与水的关系才是融洽的，和谐的。
非物质文化遗产，古老的中国象棋，也具有多态性。棋盘是一种形态，棋谱是又一种形态。前者看上去一目了然，适于对弈。后者一般人很难读懂，但倘若要将下棋的过程记录下来，供后人借鉴和研究，还得靠棋谱。老祖宗同时为我们创造了象棋文化的这两种形态，它们各有所长，各有所短，互为补充，千百年来代代相传，为开发中国人的智力，尤其是少年儿童的智力，可谓功德无量。我们多数人在年少时都曾经亲身感受过。中国老百姓与象棋文化之间的关系是融洽的，和谐的。

计算机程序也是一种非物质文化。它是现代人，主要是西方人为我们创造的一种类似于棋谱的一维文化。虽然它适于记录、编辑和修改，但读起来如本文一开始所述，与读棋谱一样颇费脑力。我们与计算机程序之间的关系并不和谐。我们应该向老祖宗学习，要开发出类似于棋盘的程序二维文化形态。SI-NS图技术及其SI-NS图就是这样一种二维文化形态。虽然目前我们还不能像文本程序那样对它方便地编辑和修改，也没有专门的系统开发平台，但那又怎么样呢？棋盘和棋谱不是共存了千百年吗。据说，二十世纪最伟大的物理学家爱因斯坦更喜欢用图而非文字思维（he tended to think in pictures rather than words. [10]），SI-NS图仅凭它百倍于程序优异的可读性就值得我们倍加关注，好好珍惜。
SI-NS图技术已经为我们揭开了程序多态性研究的序幕。相信在软件工程研究领域内，兼有文本程序方便地编辑和修改，又有着SI-NS图优异可读性的，统一的和谐的系统开发平台不难实现。
8. SI-NS图技术要为软件业腾飞插上翅膀

归结起来说：

这是一项早在1982年由笔者首创，发表在《计算机学报》[4]，并获得过浙江省优秀软件二等奖，具有完全知识产权的技术。该项技术曾先后参加过全国第三届软件展，新加坡国际软件展，并与“北大方正出版系统”等软件一起被《计算机世界》列为优秀软件[11]。
从1982年至今，二十多年的软件开发实践和软件教学实践一再证明，此项技术是成功的。它确实是软件分析、测试和维护的利器，能够在整个软件开发过程中应用，对于改善一线软件开发人员的工作环境，提高软件开发质量和效率起到立竿见影的效果，并且在国际上仍然处于领先地位。

一个软件企业倘若采用这项技术，不说提高开发质量和效率数倍、数十倍，只说提高一倍，一年下来也是一笔非常可观的财富。尤其是我国的软件行业，普遍存在人员流动性大的问题。一个人跳槽走了，要读懂他留下来的程序对别人来讲是很大的负担。随着开发模式从面向程序到面向SI-NS图的转变，相信还会对软件企业的整个开发运作模式产生深刻的影响。

一本计算机语言类或编程类教材倘若采用这项技术，学生从难以读懂一个复杂的程序到能轻松地看懂，并且还能在SI-NS图上执行和验证程序算法逻辑，想必其教学效果和教学质量与以往不可同日而语了。这本教材也一定会受到更多读者的欢迎。

笔者认为，程序的多态性、图形化表达、图形化语言及其开发环境，是未来软件工程一个重要的研究领域和方向。以SI-NS图技术为基础，可以在该领域的研究中进一步做出重要贡献。

最后，还是那句老话：不唯上、不唯书、只唯实。不过，对于国内一向崇尚国外技术的IT行业和学界来讲，还得加上一句“不唯洋”。也只有这样，中国的软件业才有希望。您说对吗？

参考文献

1 谭浩强．C程序设计．北京：清华大学出版社，1991年7月
2 严桂兰，刘甲耀．PAD与Turbo C程序设计．上海：华东理工大学出版社，1994年7月

3 James Cross．GRASP主页：http://www.eng.auburn.edu/grasp
4 斯传根．PASCAL程序到SI-NS结构图的自动变换．计算机学报，1986年9卷3期：237～240

5 斯传根．SI-NS程序图型化表示方法．工程设计学报，2001年3期：157～160

6 斯传根．编译设计与开发技术．北京：清华大学出版社，2003年12月

7 斯传根．以提高学生研发能力为目标的编译教材和教学改革研究．计算机教育，清华大学主办2004年2/3期：138～141

8 李晓明．打下坚实基础，学好编译原理．计算机教育，清华大学主办2004年1期：78

9 Sun Microsystems,Inc．Java code conventions．September 12,1997

10 Walter Isaacson．Einstein:His Life and Universe．Amazon.com
11 全国第三届软件交流会部分参展优秀软件介绍，计算机世界，1991年4月3日，第13页
SI-NS Diagram, A Good Tool for Software Analysis & Test
Si Chuangen

Zhejiang University of Science and Technology
Abstract:
The article is based on the lecture at the 4th China Conference on Software Engineering at Hangzhou, China on 17 June, 2007. It focuses on the introduction of SI-NS diagram technique, which is universally applicable in the whole process of software programming, developing, analysing, testing, filing and maitaining. With this technique software engineer enjoy significant improvement of working conditions, productivity and efficiency.
Keywords:
Software Engineering, SI-NS diagram, Software analysis, Software maintenance

图3 由求解一元二次方程C程序生成的PAD

图4 由求解一元二次方程Ｃ程序生成的SI-NS图

图5 执行二叉树搜索算法的C程序函数和由GRASP生成的CSD

图6 执行二叉树搜索算法C程序函数的SI-NS图

图7 起泡法对10个数排序C程序和用NS图表示的算法设计

图8 起泡法排序C程序生成的SI-NS图

图2 if语句的SI-NS图

PAGE
10

_1044509531.unknown

